
1

NAS Kernels on the Connection Machine
RND-90-005

Russell Carter
Computer Sciences Corporation
NASA Ames Research Center
Moffett Field, CA 94035, USA

Revised February, 1991

Introduction

TheNAS Kernel Benchmark Program is a collection of FORTRAN subroutines, or
"kernels", which were chosen to be representative of the computational workload
of the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames
Research Center. Details of the kernels are provided in [1]. The kernels provide
benchmark measures of double precision (64 bit) floating point computation rate
and accuracy and have been run on many different computer systems [2]. The ker-
nels were developed in FORTRAN 77 and were designed for maximum perfor-
mance on serial vector machines. However, as high performance scientific
computing evolves, increasing emphasis has been placed on parallel computer sys-
tems. This report details the implementation and performance of the kernels on a
massively parallel computer system, a Thinking Machines Corporation Connection
Machine 2 (CM) with 32K processors.

Connection Machine Description

The CM system consists of a collection of simple processors, each with its own
memory, all acting under the direction of a conventional computer system called the
front-end. The Connection Machine system installed at NAS has 32K processors.
Each processor has 8K bytes of memory, for a total of 256M bytes of memory.
There are 1024 32 bit floating point units. The front-end is a Sun 4/490 with two
processors (one dedicated to IO) and 128 megabytes of memory running SunOs
4.0.3. The FORTRAN supplied is CM FORTRAN version 0.7.

The CM performs parallel computations at the FORTRAN program level primarily
at the DO loop level. Parallelism in a FORTRAN program is exploited by express-
ing parallelizable loops in proposed FORTRAN 8x array section syntax. Arrays
used in FORTRAN 8x constructions are stored in CM memory, one element per
processor. When the front-end computer executes a CM FORTRAN program, it
performs serial operations on scalar data stored in its own memory, but sends in-
structions for array operations to the CM. When the CM receives an instruction,
each processor executes it on its own data. The following code fragments illustrate
the differences in syntax between the traditional FORTRAN 77 DO loop and the
FORTRAN 8x array section syntax.

2

FORTRAN 77 DO loop version:
do 10 i=1,n

a(i)=b(i)*c(i)+d(i)*x

f(i)=cos(a(i))

10 continue

FORTRAN 8x version:

a(1:n)=b(1:n)*c(1:n)+d(1:n)*x

f(1:n)=cos(a(1:n))

Procedure

The purpose of the project was to perform a port of the kernels to the CM. Work
on the project was initiated by E. Barszcz and L. A. Tanner at NAS. This report
extends and completes their work.

No attempt was made to substitute appropriate parallel algorithms for the serial,
vectorizable algorithms in the kernels. As few changes to the original FORTRAN
source were made as possible. Thus the first step of the port was to convert the par-
allelizable FORTRAN 77 DO loops to FORTRAN 8x array section syntax. Since
the Cray FORTRAN compilercft77 supports the proposed array syntax extensions,
and the compile-link-run cycle is much faster on the NAS Cray Y-MP than on the
CM, the NAS Kernels were first converted to the Cray's version of the array section
syntax. Subsequently the converted kernels were run on one processor of the Cray
Y-MP 8128, and produced the following results:

Table 1
Cray Y-MP FORTRAN 8x

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 1.8085E-13 4.1943E+08 1.5825 265.04

CFFT2D 3.2001E-12 4.9807E+08 11.0693 45.00

CHOLSKY 1.8256E-10 2.2103E+08 4.9587 44.57

BTRIX 6.0622E-12 3.2197E+08 4.4777 71.91

GMTRY 6.5609E-13 2.2650E+08 3.8344 59.07

EMIT 1.5609E-13 2.2604E+08 1.3052 173.18

VPENTA 2.3541E-13 2.5943E+08 7.1444 36.31

3

The ERROR column lists the difference between a single computed value and a ref-
erence value in each kernel. The FP OPS column lists the number of double preci-
sion (64 bit) floating point operations performed in each kernel. The SECONDS
column lists the CPU time used to compute each kernel. No initialization work is
counted toward CPU time. MFLOPS lists millions of floating point operations per
second. The TOTAL row is the sum of each column, except for the MFLOPS entry,
which is the total millions of floating point operations divided by the total CPU time
used.

Several kernels ran significantly slower when expressed in array section syntax.
Comparing output from the unmodified FORTRAN 77 version of the kernels shows
decreases in MFLOP computation rate in the CFFT2D, CHOLSKY, BTRIX,
GMTRY, and VPENTA kernels. The FORTRAN 77 output of a run on one pro-
cessor of the Cray Y-MP is provided in Table 2.

Table 2
Cray Y-MP FORTRAN 77

THE NAS KERNEL BENCHMARK PROGRAM

Differences in MFLOP rates between the array section syntax version and the orig-
inal FORTRAN 77 version occur because thecft77 compiler apparently generates
less efficient code for some loops expressed in the array section syntax.

Conversion of Y-MP 8x version to CM FORTRAN

TOTAL 1.9305E-10 2.1725E+09 34.3724 63.20

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 1.8085E-13 4.1943E+08 1.5705 267.06

CFFT2D 3.2001E-12 4.9807E+08 7.0951 70.20

CHOLSKY 1.8256E-10 2.2103E+08 2.6393 83.75

BTRIX 6.0622E-12 3.2197E+08 2.3717 135.76

GMTRY 6.5609E-13 2.2650E+08 2.0910 108.32

EMIT 1.5609E-13 2.2604E+08 1.2987 174.05

VPENTA 2.3541E-13 2.5943E+08 4.7900 54.16

TOTAL 1.9305E-10 2.1725E+09 21.8563 99.40

4

The Y-MP array section syntax version was then converted to Connection Machine
FORTRAN. With the exception of two kernels discussed below and the MXM ker-
nel, no modifications were made to the original algorithm. Since general matrix
multiplication is a standard CM FORTRAN library call, the CM FORTRAN library
matrix multiply routine MATMUL was used to perform the matrix multiplications
in the MXM kernel.

Transferring the Y-MP FORTRAN 8x version of the kernels to the CM was
straightforward. Most loops expressed in array section syntax ran without addition-
al modification on the CM. Programming issues that had to be addressed in order
to permit computations to run on the CM stemmed primarily from the front-end
coupled to massively parallel back-end architecture of the CM system. Array ini-
tialization in the kernels consists of scalar (sequential) assignment of pseudo-ran-
dom numbers to the appropriate arrays. Scalar assignments on the CM are
performed on the front end; hence all scalar array initializations were performed on
the front end and explicitly passed to the CM. This obviated the need for common
blocks, so arrays declared in common were redeclared as local arrays within the test
subroutines and passed to the kernel subroutines as parameters. Initialization work
was not included in the timed sections.

The amount of time spent on this project was about three person-weeks.

Results

The kernels run very slowly on the CM. In order to obtain results in a reasonable
amount of real time, the number of iterations for each kernel was reduced to the
minimum amount. The number of floating point operations performed decreased
accordingly and is reflected in the total floating point operations column (FP OPS)
in the output. This modification does not affect either accuracy (as shown in the
column labeled ERROR) or MFLOP computation rate. The results of a 32K (all
available processors) CM run using double precision (64 bit) floating point arith-
metic are provided in Table 3.

Table 3
CM FORTRAN 90

THE NAS KERNEL BENCHMARK PROGRAM

PROGRAM ERROR FP OPS SECONDS MFLOPS

MXM 2.8258E-15 4.1943E+06 4.2946 0.976*

CFFT2D 4.8710E-08 4.9807E+06 75.0830 0.066

CHOLSKY 3.0581E-12 1.1052E+06 29.5347 0.037

5

* Performance using library matrix multiplication call MATMUL.

The Y-MP 8x version of the GMTRY, EMIT, and BTRIX kernels ran exceptionally
slowly on the CM. Projected elapsed run times obtained from partial runs of the
shortened kernels were on the order of several hours. This is the result of the algo-
rithmic characteristics of these kernels. The number of iterations of the paralleliz-
able loops in these kernels range from 5 to 1000. Since the number of processors
computing simultaneously is at most the number of the number of parallel iterations
of a loop,the maximum computation rate is limited by the number of iterations in
the loop. A way of introducing higher level parallelism in these routines is to use
the CM FORTRAN library subroutines SPREAD and SUM. These routines, which
are not available for the Y-MP, increase the fraction of parallelizable operations by
duplicating data across processors. An example from EMIT kernel illustrates this
idea. The Y-MP 8x version of the code is given below:

expz(1:nv) = EXP (z(1:nv) * pidp)

expmz(1:nv) = 1. / expz(1:nv)

DO 1 l = 1, nb

DO 2 k = 1, nwall(l)

expwkl = EXP (wall(k,l) * pidp)

expmwk = 1. / expwkl

sps = 0.

dum3(1:nv) = expz(1:nv) * expmwk - expwkl * exp-

mz(1:nv)

ps(1:nv) = gamma(1:nv) * LOG (REAL(dum3(1:nv)) **

2 +

 & AIMAG(dum3(1:nv)) ** 2 + sig2)

DO 3 i = 1, nv

sps = sps + ps(i)

3 CONTINUE

2 CONTINUE

1 CONTINUE

BTRIX 4.1941E-13 5.3662E+05 118.9443 0.004

GMTRY 6.9573E-06 1.1325E+08 59.4254 1.905

EMIT 1.0593E-07 2.2604E+07 35.6761 0.633

VPENTA 4.6957E-15 6.4858E+05 24.7714 0.026

TOTAL 7.1119E-06 1.4732E+08 347.7298 0.42

6

The DO 2 and DO 3 loops are computed sequentially. After converting the code to
CM FORTRAN, redeclaring appropriate scalars as arrays, and incorporating the
SPREAD and SUM library routines, the code becomes:

expz(1:nv,1) = EXP (z(1:nv) * pidp)

expmz(1:nv,1) = 1. / expz(1:nv,1)

expz(1:nv,1:nw)=SPREAD(expz(1:nv,1),2,nw)

expmz(1:nv,1:nw)=SPREAD(expmz(1:nv,1),2,nw)

gamma(1:nv,1:nw)=SPREAD(gamma(1:nv,1),2,nw)

DO 1 l = 1, nb

sps=0.

nl=nwall(l)

expwkl(1,1:nl) = EXP (wall(1:nl,l) * pidp)

expmwk(1,1:nl) = 1. / expwkl(1,1:nl)

expwkl(1:nv,1:nl) = SPREAD(expwkl(1,1:nl),1,nv)

expmwk(1:nv,1:nl) = SPREAD(expmwk(1,1:nl),1,nv)

dum3(1:nv,1:nl) = expz(1:nv,1:nl) * expmwk(1:nv,1:nl) -

& expwkl(1:nv,1:nl) * expmz(1:nv,1:nl)

& ps(1:nv,1:nl) = gamma(1:nv,1:nl) *

& LOG (REAL (dum3(1:nv,1:nl)) ** 2 +

& AIMAG(dum3(1:nv,1:nl)) ** 2 + sig2)

sps(1:nl)=SUM(ps(1:nv,1:nl),dim=1)

1 CONTINUE

The use of SPREAD and SUM allows the parallel computation of the DO 2 and DO
3 loops. These routines were successfully used in GMTRY and EMIT to reduce ex-
ecution time to the amount reported in Table 3. BTRIX, on the other hand, has a
maximum parallel iteration count of 28 and would require much more restructuring
to take advantage of these routines. Execution time for the BTRIX routine was re-
duced by computing only the iteration for which the accuracy check was performed.

Most computational operators, library routines and data assignments appear to
work correctly in double precision real and complex formats. However, inferior ac-
curacy of the kernels CFFT2D, GMTRY, and EMIT suggests that complex arith-
metic is not performed in double precision.

Two obscure bugs were uncovered during the port. One was a compiler bug that
caused compilation to fail inexplicably for a legal CM FORTRAN construct, the
other was a runtime error that failed nonlocally, i.e., the program gave evidence of
failing at a point in the code that both logically and locationally seemed unrelated
to the actual source of error. Both were resolved in impressively short time by the
Thinking Machines Corporation representative, and were avoided by minor chang-
es to the source code.

Slowness of the kernels in general can be attributed to the fact that the amount of
available parallelism in the kernels is poorly matched to the architecture of the CM,
and to the slowness of the software computation of 64 bit floating point. This is best

7

seen by the matrix multiplication kernel MXM. The (presumably optimized) CM
FORTRAN library routine MATMUL was used to obtain the following results on
32K processors, and is compared to the FORTRAN 77 implementation of MXM
run on single processors of the Cray Y-MP and Cray 2 in Table 4. All values are in
MFLOPS.

8

Table 4

Problem CM CM Y-MP Cray 2
32bit 64bit 64bit 64bit

A * B
(256x128)*(128x64) 2.22 0.39268.66 150.44
(512x256)*(256x128) 14.991.17 277.40 172.88
(1024x512)*(512x256) 115.083.51 280.45 168.22

(1024x1024)*(1024x512) 454.369.55 280.13 158.43
(1024x1024)*(1024x1024) 899.7817.01 278.78 164.51

The matrix multiplication with dimensions 256x128 and 128x64 is the same size as
that of the NAS Kernel MXM matrix multiplication. As the amount of paralleliz-
able work increases, CM MFLOP computation rate increases as well. Codes with
relatively small amounts of data such as the NAS kernels can be expected to run
poorly on the CM.

Summary

The NAS Kernels were successfully ported to the CM. The programming environ-
ment and model is acceptably robust and general. Performance is poor, in part due
to the small amount of explicitly parallel work in the standard NAS Kernels, and
also because 64 bit computations are computed in software.

Acknowledgment

The author wishes to thank Duane Carbon, Doreen Cheng, John Barton, Robert
Bergeron, and David Browning for their constructive comments on this work. The
author also wishes to thank Kyra Lowther of Thinking Machines Corporation for
her generous and timely assistance and advice with locating and remedying prob-
lems I encountered during this work.

References

[1] Bailey, David H., and Barton, John T., "The NAS Kernel Benchmark Program",
NASA Technical Memorandum 86711 (August 1985).

[2] Bailey, David H., "NAS Kernel Benchmark Results",First International
Conference on Supercomputing Systems, IEEE Computer Society, 1985, 341-345.

